Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.418
Filtrar
1.
Cell Death Dis ; 15(4): 252, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589352

RESUMO

Cutaneous squamous carcinoma is the second most common epithelial malignancy, associated with significant morbidity, mortality, and economic burden. However, the mechanisms underlying cSCC remain poorly understood. In this study, we identified TGM3 as a novel cSCC tumor suppressor that acts via the PI3K-AKT axis. RT-qPCR, IHC and western blotting were employed to assess TGM3 levels. TGM3-overexpression/knockdown cSCC cell lines were utilized to detect TGM3's impact on epithelial differentiation as well as tumor cell proliferation, migration, and invasion in vitro. Additionally, subcutaneous xenograft tumor models were employed to examine the effect of TGM3 knockdown on tumor growth in vivo. Finally, molecular and biochemical approaches were employed to gain insight into the tumor-suppressing mechanisms of TGM3. TGM3 expression was increased in well-differentiated cSCC tumors, whereas it was decreased in poor-differentiated cSCC tumors. Loss of TGM3 is associated with poor differentiation and a high recurrence rate in patients with cSCC. TGM3 exhibited tumor-suppressing activity by regulating cell proliferation, migration, and invasion both in vitro and in vivo. As a novel cSCC tumor differentiation marker, TGM3 expression was positively correlated with cell differentiation. In addition, our results demonstrated an interaction between TGM3 and KRT14 that aids in the degradation of KRT14. TGM3 deficiency disrupts keratinocytes differentiation, and ultimately leads to tumorigenesis. Furthermore, RNA-sequence analysis revealed that loss of TGM3 enhanced EMT via the PI3K-AKT signaling pathway. Deguelin, a PI3K-AKT inhibitor, blocked cSCC tumor growth induced by TGM3 knockdown in vivo. Taken together, TGM3 inhibits cSCC tumor growth via PI3K-AKT signaling, which could also serve as a tumor differentiation marker and a potential therapeutic target for cSCC. Proposed model depicted the mechanism by which TGM3 suppress cSCC development. TGM3 reduces the phosphorylation level of AKT and degrades KRT14. In the epithelial cell layer, TGM3 exhibits a characteristic pattern of increasing expression from bottom to top, while KRT14 and pAKT are the opposite. Loss of TGM3 leads to reduced degradation of KRT14 and activation of pAKT, disrupting keratinocyte differentiation, and eventually resulting in the occurrence of low-differentiated cSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Cutâneas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Queratina-14/genética , Queratina-14/metabolismo , Carcinoma de Células Escamosas/metabolismo , Transdução de Sinais , Proliferação de Células/genética , Diferenciação Celular , Antígenos de Diferenciação , Transglutaminases/genética , Transglutaminases/metabolismo , Linhagem Celular Tumoral
2.
Soft Matter ; 20(16): 3508-3519, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38595302

RESUMO

The decellularized tilapia skin (dTS) has gained significant attention as a promising material for tissue regeneration due to its ability to provide unique structural and functional components that support cell growth, adhesion, and proliferation. However, the clinical application of dTS is limited by its low mechanical strength and rapid biodegradability. Herein, we prepare a novel RGD (arginine-glycine-aspartic acid) functionalized dTS scaffold (dTS/RGD) by using transglutaminase (TGase) crosslinking. The developed dTS/RGD scaffold possesses excellent properties, including a medium porosity of ∼59.2%, a suitable degradation rate of approximately 80% over a period of two weeks, and appropriate mechanical strength with a maximum tensile stress of ∼46.36 MPa which is much higher than that of dTS (∼32.23 MPa). These properties make the dTS/RGD scaffold ideal for promoting cell adhesion and proliferation, thereby accelerating skin wound healing in a full-thickness skin defect model. Such an enzymatic cross-linking strategy provides a favorable microenvironment for wound healing and holds great potential for application in skin regeneration engineering.


Assuntos
Oligopeptídeos , Regeneração , Pele , Tilápia , Tecidos Suporte , Transglutaminases , Animais , Tecidos Suporte/química , Tilápia/metabolismo , Transglutaminases/metabolismo , Transglutaminases/química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Cicatrização , Proliferação de Células , Engenharia Tecidual , Porosidade , Camundongos , Adesão Celular , Humanos
3.
Theranostics ; 14(6): 2329-2344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646650

RESUMO

Diabetes, a severe metabolic disease characterized by chronic hypoglycemia, poses debilitating and life-threatening risks of microvascular and macrovascular complications, including blindness, kidney failure, heart attacks, and limb amputation. Addressing these complications is paramount, urging the development of interventions targeting diabetes-associated vascular dysfunctions. To effectively combat diabetes, a comprehensive understanding of the pathological mechanisms underlying complications and identification of precise therapeutic targets are imperative. Transglutaminase 2 (TGase2) is a multifunctional enzyme implicated in the pathogenesis of diverse diseases such as neurodegenerative disorders, fibrosis, and inflammatory conditions. TGase2 has recently emerged as a key player in both the pathogenesis and therapeutic intervention of diabetic complications. This review highlights TGase2 as a therapeutic target for diabetic complications and explores TGase2 inhibition as a promising therapeutic approach in their treatment.


Assuntos
Proteínas de Ligação ao GTP , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Humanos , Transglutaminases/metabolismo , Transglutaminases/antagonistas & inibidores , Proteínas de Ligação ao GTP/metabolismo , Animais , Angiopatias Diabéticas , Diabetes Mellitus , Complicações do Diabetes
4.
Front Immunol ; 15: 1371706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650935

RESUMO

Pulmonary hypertension (PH) pathogenesis is driven by inflammatory and metabolic derangements as well as glycolytic reprogramming. Induction of both interleukin 6 (IL6) and transglutaminase 2 (TG2) expression participates in human and experimental cardiovascular diseases. However, little is known about the role of TG2 in these pathologic processes. The current study aimed to investigate the molecular interactions between TG2 and IL6 in mediation of tissue remodeling in PH. A lung-specific IL6 over-expressing transgenic mouse strain showed elevated right ventricular (RV) systolic pressure as well as increased wet and dry tissue weights and tissue fibrosis in both lungs and RVs compared to age-matched wild-type littermates. In addition, IL6 over-expression induced the glycolytic and fibrogenic markers, hypoxia-inducible factor 1α, pyruvate kinase M2 (PKM2), and TG2. Consistent with these findings, IL6 induced the expression of both glycolytic and pro-fibrogenic markers in cultured lung fibroblasts. IL6 also induced TG2 activation and the accumulation of TG2 in the extracellular matrix. Pharmacologic inhibition of the glycolytic enzyme, PKM2 significantly attenuated IL6-induced TG2 activity and fibrogenesis. Thus, we conclude that IL6-induced TG2 activity and cardiopulmonary remodeling associated with tissue fibrosis are under regulatory control of the glycolytic enzyme, PKM2.


Assuntos
Fibroblastos , Proteínas de Ligação ao GTP , Hipertensão Pulmonar , Interleucina-6 , Pulmão , Camundongos Transgênicos , Proteína 2 Glutamina gama-Glutamiltransferase , Piruvato Quinase , Transglutaminases , Animais , Transglutaminases/metabolismo , Transglutaminases/genética , Interleucina-6/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Camundongos , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Fibroblastos/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/etiologia , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Fibrose , Humanos , Modelos Animais de Doenças , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia
5.
Indian Pediatr ; 61(4): 331-336, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449276

RESUMO

OBJECTIVE: To determine the prevalence of celiac disease and its predictors in children with constipation. METHODS: A hospital-based cross-sectional comparative study was conducted between November, 2018 to April, 2020. Children aged 1-12 years were screened for the presence of constipation as per ROME IV criteria and designated as cases. Age and sex matched healthy children with normal bowel habits were enrolled as comparison group. Participants underwent a detailed history and examination, and were screened for celiac disease by estimating serum anti-tissue transglutaminase IgA antibody levels (tTG-IgA). Upper gastrointestinal endoscopy and duodenal biopsy were performed in all participants who tested positive on screening (serum tTG-IgA ≥ 20 U/mL). The prevalence of celiac disease and associated factors were compared between the two groups. RESULTS: A total of 460 children (230 in each group) with mean (SD) age 64.08 (37.12) months were enrolled. Twenty-one (4.6%) children screened positive for anti tTG antibodies, among these 15 (75%) children had biopsy features suggestive of celiac disease (Marsh grade III). Children with constipation had significantly higher prevalence of celiac disease (5.65% vs 0.87%, P = 0.004) compared to children without constipation. Wasting and stunting were significantly associated with celiac disease in constipated children (P < 0.001). CONCLUSION: Children with constipation and associated growth failure have a high prevalence of celiac disease.


Assuntos
Doença Celíaca , Criança , Humanos , Doença Celíaca/complicações , Doença Celíaca/diagnóstico , Doença Celíaca/epidemiologia , Transglutaminases , Prevalência , Estudos Transversais , Autoanticorpos , Constipação Intestinal/epidemiologia , Imunoglobulina A
6.
Clin Chim Acta ; 557: 117891, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555049

RESUMO

BACKGROUND: Laboratory testing for celiac disease in pediatric patients integrates serology, genetic susceptibility and duodenal biopsy examination. The 2023 American College of Gastroenterology guidelines recommend a biopsy-free approach in pediatric patients utilizing tissue transglutaminase antibody titers >10 times upper limit of normal and subsequent endomysial antibody seropositivity as sufficient for diagnosis. The objective of this study is to assess the diagnostic accuracy of biopsy-free approach at our pediatric hospital. METHODS: We conducted a retrospective study involving pediatric patients who underwent biopsy for diagnostic confirmation of celiac disease between May 2019 and May 2023. For these patients, the tissue transglutaminase and endomysial antibody test results were retrieved and performance of biopsy-free approach was assessed using the duodenal histology as the gold standard for celiac disease diagnosis. RESULTS: Tissue transglutaminase antibody titers >10 times upper limit of normal alone demonstrated a positive predictive value of 99% for identifying celiac disease in children. Although endomysial antibody testing is underutilized at our center, its inclusion further improved the predictability to 100 %. CONCLUSION: Positive predictive value of tissue transglutaminase antibody titers >10 times upper limit of normal is sufficiently high for celiac disease diagnosis in children and may allow for deferral of duodenal biopsy at diagnosis.


Assuntos
Doença Celíaca , Proteína 2 Glutamina gama-Glutamiltransferase , Criança , Humanos , Doença Celíaca/diagnóstico , Doença Celíaca/patologia , Estudos Retrospectivos , Transglutaminases , Proteínas de Ligação ao GTP , Imunoglobulina A , Biópsia , Autoanticorpos
7.
J Cancer Res Clin Oncol ; 150(3): 123, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472489

RESUMO

BACKGROUND: There is currently a limited number of studies on transglutaminase type 1 (TGM1) in tumors. The objective of this study is to perform a comprehensive analysis across various types of cancer to determine the prognostic significance of TGM1 in tumors and investigate its role in the immune environment. METHOD: Pan-cancer and mutational data were retrieved from the TCGA database and analyzed using R (version 3.6.4) and its associated software package. The expression difference and prognosis of TGM1 were examined, along with its correlation with tumor heterogeneity, stemness, mutation landscape, and RNA modification. Additionally, the relationship between TGM1 expression and tumor immunity was investigated using the TIMER method. RESULTS: TGM1 is expressed differently in various tumors and normal samples and is associated with the overall survival and progression-free time of KIRC, ACC, SKCM, LIHC, and STES. In LICH, we found a negative correlation between TGM1 expression and 6 indicators of tumor stemness. The mutation frequencies of BLCA, LIHC, and KIRC were 1.7%, 0.3%, and 0.3% respectively. In BLCA and BRCA, there was a significant correlation between TGM1 expression and the infiltration of CD4 + T cells, CD8 + T cells, neutrophils, and dendritic cells. CONCLUSION: TGM1 has the potential to serve as both a prognostic marker and a drug target.


Assuntos
Neoplasias , Humanos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Transglutaminases
8.
Food Chem ; 448: 138988, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522295

RESUMO

This study prepared emulsion gels by modifying ovalbumin (OVA)-flaxseed oil (FSO) emulsions with transglutaminase (TGase) and investigated their properties, structure and oxidative stability under different enzyme reaction times. Here, we found prolonged reaction times led to the transformation of α-helix and ß-turn into ß-sheet and random coil. The elasticity, hardness and water retention of the emulsion gels increased significantly, but the water-holding capacity decreased when the reaction time exceeded 4 h. Confocal laser scanning microscope (CLSM) indicated extended enzyme reaction time fostered oil droplet aggregation with proteins. Emulsion gel reduced FSO oxidation, especially after 4 h of the enzyme reaction, the peroxide value (PV) of the emulsion gel was reduced by 29.16% compared to the control. In summary, the enzyme reaction time of 4 h resulted in the formation of a dense gel structure and enhanced oxidative stability. This study provides the potential applications in functional foods and biomedical fields.


Assuntos
Emulsões , Géis , Óleo de Semente do Linho , Ovalbumina , Oxirredução , Transglutaminases , Ovalbumina/química , Transglutaminases/química , Transglutaminases/metabolismo , Emulsões/química , Óleo de Semente do Linho/química , Géis/química
9.
Bioconjug Chem ; 35(4): 465-471, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38499390

RESUMO

A versatile chemo-enzymatic tool to site-specifically modify native (nonengineered) antibodies is using transglutaminase (TGase, E.C. 2.3.2.13). With various amines as cosubstrates, this enzyme converts the unsubstituted side chain amide of glutamine (Gln or Q) in peptides and proteins into substituted amides (i.e., conjugates). A pleasant surprise is that only a single conserved glutamine (Gln295) in the Fc region of IgG is modified by microbial TGase (mTGase, EC 2.3.2.13), thereby providing a highly specific and generally applicable conjugation method. However, prior to the transamidation (access to the glutamine residue by mTGase), the steric hindrance from the nearby conserved N-glycan (Asn297 in IgG1) must be reduced. In previous approaches, amidase (PNGase F, EC 3.5.1.52) was used to completely remove the N-glycan. However, PNGase F also converts a net neutral asparagine (Asn297) to a negatively charged aspartic acid (Asp297). This charge alteration may markedly change the structure, function, and immunogenicity of an IgG antibody. In contrast, in our new method presented herein, the N-glycan is trimmed by an endoglycosidase (EndoS2, EC 3.2.1.96), hence retaining both the core N-acetylglucosamine (GlcNAc) moiety and the neutral asparaginyl amide. The trimmed glycan also reduces or abolishes Fc receptor-mediated functions, which results in better imaging agents by decreasing nonspecific binding to other cells (e.g., immune cells). Moreover, the remaining core glycan allows further derivatization such as glycan remodeling and dual conjugation. Practical and robust, our method generates conjugates in near quantitative yields, and both enzymes are commercially available.


Assuntos
Glutamina , Glicosídeo Hidrolases , Glutamina/química , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Transglutaminases/metabolismo , Imunoglobulina G/química , Polissacarídeos/química , Amidas
10.
ACS Appl Mater Interfaces ; 16(13): 15893-15906, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512725

RESUMO

Polymer-mediated cell surface engineering can be a powerful tool to modify the cell's biological behavior, but a simple ligation strategy must be identified. This manuscript assessed the use of transglutamination as a versatile and adaptable approach for cell surface engineering in various cellular models relevant to biomedical applications. This enzymatic approach was evaluated for its feasibility and potential for conjugating polymers to diverse cell surfaces and its biological effects. Transglutaminase-mediated ligation was successfully performed at temperatures ranging from 4 to 37 °C in as quickly as 30 min, while maintaining biocompatibility and preserving cell viability. This approach was successfully applied to nine different cell surfaces (including adherent cells and suspension cells) by optimizing the enzyme source (guinea pig liver vs microbial), buffer compositions, and incubation conditions. Finally, polymer-mediated cell surface engineering using transglutaminase exhibited immunocamouflage abilities for endothelial cells, T cells, and red blood cells by preventing the recognition of cell surface proteins by antibodies. Employing transglutaminase in polymer-mediated cell surface engineering is a promising approach to maximize its application in cell therapy and other biomedical applications.


Assuntos
Polímeros , Transglutaminases , Animais , Cobaias , Polímeros/metabolismo , Transglutaminases/metabolismo , Células Endoteliais/metabolismo , Membrana Celular/metabolismo , Engenharia Celular
11.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474044

RESUMO

Transglutaminase type 2 (TG2) is the most ubiquitously expressed and well characterized member of the transglutaminase family. It is a ubiquitous multifunctional enzyme implicated in the regulation of several cellular pathways that support the survival, death, and general homeostasis of eukaryotic cells. Due to its multiple localizations both inside and outside the cell, TG2 participates in the regulation of many crucial intracellular signaling cascades in a tissue- and cell-specific manner, making this enzyme an important player in disease development and progression. Moreover, TG2 is capable of modulating the tumor microenvironment, a process of dynamic tissue remodeling and biomechanical events, resulting in changes which influence tumor initiation, growth, and metastasis. Even if generally related to the Ca2+-dependent post-translational modification of proteins, a number of different biological functions have been ascribed to TG2, like those of a peptide isomerase, protein kinase, guanine nucleotide binder, and cytosolic-nuclear translocator. With respect to cancer, TG2's role is controversial and highly debated; it has been described both as an anti- and pro-apoptotic factor and is linked to all the processes of tumorigenesis. However, numerous pieces of evidence support a tissue-specific role of TG2 so that it can assume both oncogenic and tumor-suppressive roles.


Assuntos
Neoplasias , Proteína 2 Glutamina gama-Glutamiltransferase , Humanos , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/metabolismo , Transdução de Sinais , Microambiente Tumoral
12.
J Agric Food Chem ; 72(8): 4207-4216, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354706

RESUMO

The transglutaminase (TGase) from Streptomyces mobaraensis is widely used to improve the texture of protein-based foods. However, wild-type TGase is not heat-resistant, which is unfavorable for its application. In this study, we successfully constructed a S. mobaraensis strain that can efficiently produce TGm2, a thermostable mutant of S. mobaraensis TGase. First, S. mobaraensis DSM40587 was subjected to atmospheric room temperature plasma mutagenesis, generating mutant smY2022 with a 12.2-fold increase in TGase activity. Then, based on the double-crossover recombination, we replaced the coding sequence of the TGase with that of TGm2 in smY2022, obtaining the strain smY2022-TGm2. The extracellular TGase activity of smY2022-TGm2 reached 61.7 U/mL, 147% higher than that of smY2022. Finally, the catalytic properties of TGm2 were characterized. The half-life time at 60 °C and specific activity of TGm2 reached 64 min and 71.15 U/mg, 35.6- and 2.9-fold higher than those of the wild-type TGase, respectively. As indicated by SDS-PAGE analysis, TGm2 exhibited demonstrably better protein cross-linking ability than the wild-type TGase at 70 °C, although both enzymes shared a similar ability at 40 °C. With improved enzyme production and thermal stability, smY2022-TGm2 could be a competitive strain for the industrial production of transglutaminase.


Assuntos
Streptomyces , Transglutaminases , Transglutaminases/genética , Transglutaminases/metabolismo , Streptomyces/metabolismo , Proteínas de Bactérias/metabolismo
13.
Food Chem ; 443: 138568, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301564

RESUMO

Previous studies showed that transglutaminase (TGase) and microwaves acted synergistically to improve the functional properties of proteins. The mechanism behind this has yet to be elucidated. In this study, the phenomenon of microwaves enhancing TGase activity was experimentally validated. Molecular docking and molecular dynamics simulations revealed that moderate microwaves (105 and 108 V/m) increased the structural flexibility of TGase and promoted the orientation of the side chain carboxylate anion group on Asp255, driving the reaction forward. Also, TGase underwent partial transformation from α-helix to turns or coils at 105 and 108 V/m, exposing more residues in the active site and facilitating the binding of the substrate (CBZ-Gln-Gly) to TGase. However, 109 V/m microwaves completely destroyed the TGase structure, inactivating the enzyme. This study provides insights into the molecular mechanisms underlying the interactions between TGase and substrate subjected to microwaves, promoting the future applications of TGase and microwaves in food processing.


Assuntos
Simulação de Dinâmica Molecular , Transglutaminases , Transglutaminases/metabolismo , Simulação de Acoplamento Molecular , Micro-Ondas , Proteínas
14.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397040

RESUMO

Neurodegenerative diseases encompass a heterogeneous group of disorders that afflict millions of people worldwide. Characteristic protein aggregates are histopathological hallmark features of these disorders, including Amyloid ß (Aß)-containing plaques and tau-containing neurofibrillary tangles in Alzheimer's disease, α-Synuclein (α-Syn)-containing Lewy bodies and Lewy neurites in Parkinson's disease and dementia with Lewy bodies, and mutant huntingtin (mHTT) in nuclear inclusions in Huntington's disease. These various aggregates are found in specific brain regions that are impacted by neurodegeneration and associated with clinical manifestations. Transglutaminase (TG2) (also known as tissue transglutaminase) is the most ubiquitously expressed member of the transglutaminase family with protein crosslinking activity. To date, Aß, tau, α-Syn, and mHTT have been determined to be substrates of TG2, leading to their aggregation and implicating the involvement of TG2 in several pathophysiological events in neurodegenerative disorders. In this review, we summarize the biochemistry and physiologic functions of TG2 and describe recent advances in the pathogenetic role of TG2 in these diseases. We also review TG2 inhibitors tested in clinical trials and discuss recent TG2-targeting approaches, which offer new perspectives for the design of future highly potent and selective drugs with improved brain delivery as a disease-modifying treatment for neurodegenerative disorders.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Peptídeos beta-Amiloides , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Transglutaminases/metabolismo , Proteínas tau
15.
Gut ; 73(5): 844-853, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38378252

RESUMO

Serum antibodies to the autoantigen transglutaminase 2 (TG2) are increasingly harnessed to diagnose coeliac disease. Diagnostic guidelines for children give recommendation for a no-biopsy-based diagnosis through detection of high amounts of IgA anti-TG2 antibodies in serum with confirmation of positivity in a separate blood sample by characteristic autoantibody-staining of tissue. While measurement of IgA anti-TG2 also is important in the diagnostic workup of adults, the adult guidelines still mandate examination of gut biopsies. This requirement might well change in the future, as might the necessity for confirming autoantibody positivity by tissue staining. The key role of autoantibody serology for diagnosis of coeliac disease is paradoxical. Coeliac disease was considered, and still can be considered, a food intolerance disorder where autoantibodies at face value are out of place. The immunological mechanisms underlying the formation of autoantibodies in response to gluten exposure have been dissected. This review presents the current insights demonstrating that the autoantibodies in coeliac disease are intimately integrated in the maladapted immune response to gluten.


Assuntos
Doença Celíaca , Hipersensibilidade Alimentar , Adulto , Criança , Humanos , Doença Celíaca/patologia , Transglutaminases , Autoanticorpos , Glutens/efeitos adversos , Imunoglobulina A
16.
ACS Appl Bio Mater ; 7(3): 1723-1734, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38346174

RESUMO

The development of three-dimensional (3D) biomaterials that mimic natural tissues is required for efficiently restoring physiological functions of injured tissues and organs. In the field of soft hydrogels, self-assembled peptides (SAPs) stand out as distinctive biomimetic scaffolds, offering tunable properties. They have garnered significant attention in nanomedicine due to their innate ability to self-assemble, resulting in the creation of fibrous nanostructures that closely mimic the microenvironment of the extracellular matrix (ECM). This unique feature ensures their biocompatibility and bioactivity, making them a compelling area of study over the past few decades. As they are soft hydrogels, approaches are necessary to enhance the stiffness and resilience of the SAP materials. This work shows an enzymatic strategy to selectively increase the stiffness and resiliency of functionalized SAPs using transglutaminase (TGase) type 2, an enzyme capable of triggering the formation of isopeptide bonds. To this aim, we synthesized a set of SAP sequences and characterized their cross-linking via rheological experiments, atomic force microscopy (AFM), thioflavin-T binding assay, and infrared spectroscopy (ATR-FTIR) tests. The results showed an improvement of the storage modulus of cross-linked SAPs at no cost of the maximum stress-at-failure. Further, in in vitro tests, we examined and validated the TGase capability to cross-link SAPs without hampering seeded neural stem cells (hNSCs) viability and differentiation, potentially leaving the door open for safe in situ cross-linking reactions in vivo.


Assuntos
Engenharia Tecidual , Transglutaminases , Engenharia Tecidual/métodos , Peptídeos/farmacologia , Peptídeos/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Hidrogéis/farmacologia , Hidrogéis/química
17.
BMJ Open Gastroenterol ; 11(1)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302475

RESUMO

OBJECTIVE: Coeliac disease (CD) diagnosis generally depends on histological examination of duodenal biopsies. We present the first study analysing the concordance in examination of duodenal biopsies using digitised whole-slide images (WSIs). We further investigate whether the inclusion of immunoglobulin A tissue transglutaminase (IgA tTG) and haemoglobin (Hb) data improves the interobserver agreement of diagnosis. DESIGN: We undertook a large study of the concordance in histological examination of duodenal biopsies using digitised WSIs in an entirely virtual reporting setting. Our study was organised in two phases: in phase 1, 13 pathologists independently classified 100 duodenal biopsies (40 normal; 40 CD; 20 indeterminate enteropathy) in the absence of any clinical or laboratory data. In phase 2, the same pathologists examined the (re-anonymised) WSIs with the inclusion of IgA tTG and Hb data. RESULTS: We found the mean probability of two observers agreeing in the absence of additional data to be 0.73 (±0.08) with a corresponding Cohen's kappa of 0.59 (±0.11). We further showed that the inclusion of additional data increased the concordance to 0.80 (±0.06) with a Cohen's kappa coefficient of 0.67 (±0.09). CONCLUSION: We showed that the addition of serological data significantly improves the quality of CD diagnosis. However, the limited interobserver agreement in CD diagnosis using digitised WSIs, even after the inclusion of IgA tTG and Hb data, indicates the importance of interpreting duodenal biopsy in the appropriate clinical context. It further highlights the unmet need for an objective means of reproducible duodenal biopsy diagnosis, such as the automated analysis of WSIs using artificial intelligence.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/diagnóstico , Transglutaminases , Inteligência Artificial , Variações Dependentes do Observador , Imunoglobulina A
18.
BMC Pediatr ; 24(1): 99, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317100

RESUMO

OBJECTIVE: The simultaneous presence of celiac disease and type 1 diabetes (T1DM) is coupled with more hazards of comorbidities and complications. This current study aimed to screen for celiac disease in Egyptian children with type 1 diabetes and evaluate its impact on glycemic control. METHODS: A cross-sectional study was verified with 200 Egyptian children diagnosed with T1DM and having a diabetic duration of less than five years. Testing for anti-tissue transglutaminase IgA (tTG-IgA), anti-tissue transglutaminase IgG (tTG-IgG), anti-Endomysial IgA (EMA), and Hb A1c levels were done. RESULTS: The serological screening revealed that 11 cases (5.5%) tested positive; 8 children with T1DM (4.0%) showed tTG-IgA antibodies ≥ 10 times the upper limit of normal (ULN) with at least one symptom; and 3 cases (1.5%) had levels between 20 and 50 IU/ml (considering a cut-off point of 10 U/ML for positive results). Intestinal biopsy was performed for these three cases, with one case detected to have subtotal villous atrophy, resulting in an overall prevalence of celiac disease in T1DM as 4.5%. Children with positive screening exhibited a higher insulin dose, a higher HbA1c, an increased frequency of hypoglycemic attacks, and recurrent DKA compared to negative cases. A negative correlation was detected between tTG-IgA antibodies with height Z score and hemoglobin level, while a positive correlation was found between tTG-IgA antibodies and HbA1c level. CONCLUSION: Undiagnosed celiac disease in children with T1DM negatively impacted metabolic control and affected their general health.


Assuntos
Doença Celíaca , Diabetes Mellitus Tipo 1 , Criança , Humanos , Doença Celíaca/diagnóstico , Doença Celíaca/epidemiologia , Doença Celíaca/complicações , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/epidemiologia , Transglutaminases , Prevalência , Estudos Transversais , Egito/epidemiologia , Hemoglobinas Glicadas , Autoanticorpos , Imunoglobulina G , Imunoglobulina A
19.
Pathol Res Pract ; 255: 155164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324966

RESUMO

Confirmatory diagnosis of celiac disease (CD) include histopathology of duodenal biopsy and tissue trans-glutaminase-IgA. Identification of tissue-specific histological markers is warranted to improve the diagnosis. A genetic study in CD identified the association of ankyrin-G that connects E-cadherin with ß2-spectrin in epithelial cells of the duodenal tissue. We attempted to investigate the differential expression of ankyrin-G, E-cadherin and ß2-spectrin in duodenal biopsy of CD subjects compared to non-CD controls. Duodenal tissue was collected from 83 study participants, of which 50 were CD, and 33 were non-CD controls. Whole RNA was isolated from 32 CD and 23 non-CD controls from available tissues, and differential mRNA expression was measured using real-time PCR. Tissue sections from 18 CD cases and 10 non-CD controls were immunostained using monoclonal antibodies. Tissue immunohistochemistry were evaluated for differential expression and pattern of expression. RT-PCR revealed significantly reduced expression of ankyrin-G (fold change=0.63; p=0.03) and E-cadherin (fold change=0.50; p=0.02) among CD subjects compared to non-CD controls. Tissue immunohistochemistry confirmed the reduced expression of ankyrin-G and E-cadherin in CD. Differential expression is grossly limited within the outer columnar epithelial cell layer. Expression fold change of E-cadherin was seen to partially correlate with the serum tTG level (r=0.4; p=0.04). In CD, reduced expression of two key cytoskeletal proteins (ankyrin-G and E-cadherin) in duodenum mucosa was observed, which indicates its implication in disease biology and could be tested as a tissue-specific biomarker for CD. Functional studies may unravel the specific contribution of these proteins in CD pathophysiology.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/diagnóstico , Doença Celíaca/patologia , Anquirinas , Espectrina , Transglutaminases/metabolismo , Duodeno/patologia , Biópsia , Mucosa Intestinal/patologia , Caderinas
20.
Bioconjug Chem ; 35(3): 340-350, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38421254

RESUMO

Microbial transglutaminase (MTG) from Streptomyces mobaraensis is a powerful biocatalytic glue for site-specific cross-linking of a range of biomolecules and synthetic molecules that have an MTG-reactive moiety. The preparation of active recombinant MTG requires post-translational proteolytic digestion of a propeptide that functions as an intramolecular chaperone to assist the correct folding of the MTG zymogen (MTGz) in the biosynthesis. Herein, we report engineered active zymogen of MTG (EzMTG) that is expressed in soluble form in the host Escherichia coli cytosol and exhibits cross-linking activity without limited proteolysis of the propeptide. We found that the saturation mutagenesis of residues K10 or Y12 in the propeptide domain generated several active MTGz mutants. In particular, the K10D/Y12G mutant exhibited catalytic activity comparable to that of mature MTG. However, the expression level was low, possibly because of decreased chaperone activity and/or the promiscuous substrate specificity of MTG, which is potentially harmful to the host cells. The K10R/Y12A mutant exhibited specific substrate-dependent reactivity toward peptidyl substrates. Quantitative analysis of the binding affinity of the mutated propeptides to the active site of MTG suggested an inverse relationship between the binding affinity and the catalytic activity of EzMTG. Our proof-of-concept study provides insights into the design of a new biocatalyst using the MTGz as a scaffold and a potential route to high-throughput screening of EzMTG mutants for bioconjugation applications.


Assuntos
Precursores Enzimáticos , Transglutaminases , Precursores Enzimáticos/genética , Transglutaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...